Search results for "Power dividers and directional couplers"
showing 9 items of 9 documents
Reconfigurable photonic routers based on multimode interference couplers
2015
We present a design approach for compact reconfigurable light routers with N access waveguides (WGs) based on multimode interference (MMI) couplers. The proposed devices comprise two MMI couplers, which are employed as power splitters and combiners, respectively, linked by an array of N single-mode WGs. When the effective refractive index of the WGs is modulated with the proper relative optical phase difference, the light can switch paths between the preset output channel and the remaining output WGs. Taking advantage of the transfer phases between the access ports of the MMI couplers, we derive very simple phase relations between the modulated WGs that enable the reconfiguration of the out…
Efficient CAD of Optimal Multi-Port Junctions Loaded with Partial-Height Cylindrical Posts using the 3D BI-RME Method
2005
A rigorous full-wave technique based on the 3D BI-RME (Boundary Integral-Resonant Mode Expansion) method for the analysis and design of compensated waveguide junctions is presented. This method is used to investigate the electrical performance of right-angled bends and rectangular waveguide T-junctions loaded with partial-height cylindrical posts, with the aim of extending the typical usable bandwidths of such components. It is found that the electrical performance of a two-way power divider can be significantly improved by considering a post displaced along the symmetry plane of the structure. Therefore, this contribution reveals a new crucial design parameter not considered in previous wo…
Wavelength-selective directional coupling with dielectric-loaded plasmonic waveguides
2009
International audience; We consider wavelength-selective splitting of radiation using directional couplers (DCs) formed by dielectric-loaded surface-plasmon-polariton waveguides (DLSPPWs). The DCs were fabricated by depositing subwavelength-sized polymer ridges on a gold film using large-scale UV photolithography and characterized at telecommunications wavelengths with near-field microscopy. We demonstrate a DLSPPW-based 45-mu m-long DC comprising 3 mu m offset S bends and 25-mu m-long parallel waveguides that changes from the "through" state at 1500 nm to 3 dB splitting at 1600 nm, and show that a 50.5-mu m-long DC should enable complete separation of the radiation channels at 1400 and 162…
Thermo-optic control of dielectric-loaded plasmonic Mach-Zehnder interferometers and directional coupler switches
2012
We report detailed experimental studies of compact fiber-coupled dielectric-loaded plasmonic waveguide components-Mach-Zehnder interferometers (MZIs) and directional couplers (DCs)-whose operation at telecom wavelengths is controlled via the thermo-optic effect by electrically heating the gold stripe of dielectric-loaded plasmonic waveguides. The effect of the gaps isolating the heated part of the waveguide from the rest of the structure was examined showing the presence of a Fabry-Perot cavity in this MZI arm. Wavelength-dependent modulation is demonstrated with MZI-based components, and wavelength dependent low power (similar to 0.92 mW) rerouting is achieved with DC switches. Furthermore…
Wavelength-flattened directional couplers for mirror-symmetric interferometers
2005
In the context of guided optics, we derive, analytically and geometrically, a rigorous general criterion to design wavelength insensitive interferometers with mirror symmetry, which are needed for wavelength multiplexing/demultiplexing. The criterion is applied to a practical case, resulting in an interferometer that works on a band wider than 70 nm.
Tunable arrayed waveguide grating driven by surface acoustic waves
2016
We present a design approach for compact reconfigurable phased-array wavelength-division multiplexing (WDM) devices with N access waveguides (WGs) based on multimode interference (MMI) couplers. The proposed devices comprise two MMI couplers which are employed as power splitters and combiners, respectively, linked by an array of N single-mode WGs. First, passive devices are explored. Taking advantage of the transfer phases between the access ports of the MMI couplers, we derive very simple phase relations between the arms that provide wavelength dispersion at the output plane of the devices. When the effective refractive index of the WGs is modulated with the proper relative optical phase d…
Evaluation of performance of a hybrid electro-optic directional coupler and a Mach–Zehnder switch
2017
The efficiency of an electro-optic (EO) directional coupler (DC) and a Mach–Zehnder (MZ) switch is discussed. The specific designs employ a passive waveguide core and an EO cladding. The performance of a DC switch was evaluated by numerical methods, namely coupled mode theory (CMT), eigenmode expansion (EME) method, and beam envelope method. Using the CMT and EME methods, it is shown that in the DC with a passive waveguide core and EO cladding at certain waveguide parameters the switching effect does not take place. The effect is demonstrated for the first time and suggests that careful optimization of the DC switch should be done before experimental realization of the device. The efficienc…
Design scheme for Mach–Zehnder interferometric coarse wavelength division multiplexing splitters and combiners
2006
I propose an analytical approach to design flattened wavelength splitters with cascaded Mach–Zehnder inter- ferometers when wavelength dependence of the directional couplers cannot be neglected. I start from a geo- metrical representation of the action of a doubly point-symmetrical filter, assuming no wavelength dependence of the couplers. Next I derive the analytical formulas behind its working principle and extend them to the wavelength-dependent case. I also show how the geometrical representation allows one to broaden the class of working structures. © 2006 Optical Society of America
On the Fast and Rigorous Analysis of Compensated Waveguide Junctions Using Off-Centered Partial-Height Metallic Posts
2007
In this paper, we present an efficient and rigorous method, based on the 3-D boundary integral-resonant-mode expansion technique, for the analysis of multiport rectangular waveguide junctions compensated with partial-height cylindrical metallic posts. The electrical performance of a great variety of commonly used wideband microwave circuits has been improved drastically thanks to the introduction of a new design parameter, i.e., the relative position of the metallic post in the structure. To the authors' knowledge, this parameter has not been taken into account in previous studies concerning compensated junctions using partial-height metallic posts. The developed tool has been successfully …